| Availability: | |
|---|---|
| Quantity: | |
XRT-DA
xinrui-te
-------XRT-DA
The XRT-DA Defoamer is a proprietary high-carbon alcohol polyether ester solution engineered specifically for the cement concrete admixture industry, particularly for use with polycarboxylate superplasticizers. It selectively eliminates harmful, unevenly sized bubbles while preserving beneficial air-entrained bubbles critical for concrete durability. Through rigorous industry testing and on-site applications, XRT-DA has demonstrated the ability to improve concrete pore structure, enhance compressive strength, and maintain slump stability without compromising physical properties. Its unique formulation ensures excellent water dilution stability, alkali resistance, rapid defoaming action, and long-lasting foam suppression.
◆ Selective Foam Control:
Targets large, unstable bubbles while preserving microbubbles
generated by air-entraining agents.
◆ Performance Enhancement:
Improves concrete density and pore structure, leading to higher
compressive strength and durability.
◆ Compatibility:
Flly miscible with polycarboxylate superplasticizers, forming a stable homogeneous mixture.
◆ Chemical Stability:
Resistant to alkaline environments typical in concrete formulations (pH > 12).
◆ Ease of Use:
Water-dilutable without emulsion breaking or oil separation, ensuring uniform dispersion.
| Parameter | Specification |
|---|---|
| Appearance | Turbid oily liquid |
| Active Matter Content | ≥95% |
| Viscosity (No. 2 Rotor) | 300–1500 mPa·s |
| pH Value | 6–7 |
| Ionic Type | Non-ionic |
| Solubility | Water-soluble |
◆ Recommended Dosage:
Add 1–3‰ (0.1–0.3% by weight) of the polycarboxylate superplasticizer content.
◆ Mixing Procedure:
Stir XRT-DA thoroughly before use to ensure homogeneity.
Incorporate into the superplasticizer solution under continuous agitation for 20–50 seconds.
◆ Compatibility:
Compatible with all standard polycarboxylate-based admixtures.
◆ Benefits:
Optimized Air Void System: Creates uniform, stable microbubbles for freeze-thaw resistance.
Strength Retention: Maintains or enhances compressive strength compared to untreated concrete.
Workability: Preserves slump consistency for extended periods.
Durability: Reduces permeability and improves resistance to chemical attack.
Cost-Effective: Low dosage requirement minimizes admixture costs.
◆ Packaging Options:
25 kg plastic barrels, 50 kg drums, or 200 kg steel drums.
◆ Storage Conditions:
Store in a cool, dry indoor environment (≤30°C/86°F).
Protect from direct sunlight to prevent degradation.
◆ Shelf Life:
12 months when stored in original, sealed containers.
◆ Safety Information:
Non-Hazardous: Classified as a non-dangerous good per international regulations.
◆ Handling:
Wear standard protective equipment (gloves, goggles) during handling.
Avoid contact with eyes and prolonged skin exposure.
High-Strength Concrete: Bridges, high-rise buildings, and infrastructure.
Self-Compacting Concrete: Complex formwork and reinforced structures.
Precast Elements: Panels, pipes, and architectural components.
Marine & Underground Construction: Where durability is critical.
-------XRT-DA
The XRT-DA Defoamer is a proprietary high-carbon alcohol polyether ester solution engineered specifically for the cement concrete admixture industry, particularly for use with polycarboxylate superplasticizers. It selectively eliminates harmful, unevenly sized bubbles while preserving beneficial air-entrained bubbles critical for concrete durability. Through rigorous industry testing and on-site applications, XRT-DA has demonstrated the ability to improve concrete pore structure, enhance compressive strength, and maintain slump stability without compromising physical properties. Its unique formulation ensures excellent water dilution stability, alkali resistance, rapid defoaming action, and long-lasting foam suppression.
◆ Selective Foam Control:
Targets large, unstable bubbles while preserving microbubbles
generated by air-entraining agents.
◆ Performance Enhancement:
Improves concrete density and pore structure, leading to higher
compressive strength and durability.
◆ Compatibility:
Flly miscible with polycarboxylate superplasticizers, forming a stable homogeneous mixture.
◆ Chemical Stability:
Resistant to alkaline environments typical in concrete formulations (pH > 12).
◆ Ease of Use:
Water-dilutable without emulsion breaking or oil separation, ensuring uniform dispersion.
| Parameter | Specification |
|---|---|
| Appearance | Turbid oily liquid |
| Active Matter Content | ≥95% |
| Viscosity (No. 2 Rotor) | 300–1500 mPa·s |
| pH Value | 6–7 |
| Ionic Type | Non-ionic |
| Solubility | Water-soluble |
◆ Recommended Dosage:
Add 1–3‰ (0.1–0.3% by weight) of the polycarboxylate superplasticizer content.
◆ Mixing Procedure:
Stir XRT-DA thoroughly before use to ensure homogeneity.
Incorporate into the superplasticizer solution under continuous agitation for 20–50 seconds.
◆ Compatibility:
Compatible with all standard polycarboxylate-based admixtures.
◆ Benefits:
Optimized Air Void System: Creates uniform, stable microbubbles for freeze-thaw resistance.
Strength Retention: Maintains or enhances compressive strength compared to untreated concrete.
Workability: Preserves slump consistency for extended periods.
Durability: Reduces permeability and improves resistance to chemical attack.
Cost-Effective: Low dosage requirement minimizes admixture costs.
◆ Packaging Options:
25 kg plastic barrels, 50 kg drums, or 200 kg steel drums.
◆ Storage Conditions:
Store in a cool, dry indoor environment (≤30°C/86°F).
Protect from direct sunlight to prevent degradation.
◆ Shelf Life:
12 months when stored in original, sealed containers.
◆ Safety Information:
Non-Hazardous: Classified as a non-dangerous good per international regulations.
◆ Handling:
Wear standard protective equipment (gloves, goggles) during handling.
Avoid contact with eyes and prolonged skin exposure.
High-Strength Concrete: Bridges, high-rise buildings, and infrastructure.
Self-Compacting Concrete: Complex formwork and reinforced structures.
Precast Elements: Panels, pipes, and architectural components.
Marine & Underground Construction: Where durability is critical.
In the world of modern construction, the demand for durable flooring solutions is ever-increasing. Floor screeds, which are essential for providing a smooth and even surface for floors, often face the challenge of maintaining their integrity under extreme conditions such as high temperatures and heavy traffic. For many years, traditional screed materials have been used in various types of buildings, but there’s always room for improvement, especially when it comes to durability and performance. That’s where heat-resistant concrete fiber comes into play.
In the construction industry, the demand for stronger, more durable materials is ever-growing. As the need for high-performance building materials increases, 100% virgin concrete fiber is emerging as a game-changer in plaster applications. Traditionally, plaster has been used for both aesthetic and functional purposes in construction, but with advancements in material science, concrete fiber is transforming the way plaster is applied and utilized.
Concrete has long been recognized for its strength and versatility in construction projects. Whether it’s for roadways, buildings, or infrastructure, concrete is the backbone of modern construction. However, one of the challenges engineers and builders often face is ensuring that the concrete maintains its structural integrity over time, especially under stress. To overcome this challenge, innovations in concrete materials have been developed, with polymer concrete fiber emerging as a key component in boosting the strength and durability of cement.
In the realm of modern construction, the search for stronger, more durable materials is ongoing. One such innovation that has dramatically changed the way concrete is used in construction is staple concrete fiber. This specialized material, when mixed into concrete, significantly enhances its strength, performance, and longevity. Whether used in pavements, highways, or structural elements, staple concrete fiber provides numerous advantages that traditional reinforcement methods can’t match.
Concrete is one of the most commonly used materials in construction and industrial applications, but the constant challenge has always been improving its durability and strength. One of the most innovative solutions to enhance concrete's performance has been the introduction of monofilament plastic synthetic fibers. These fibers have transformed how industries approach concrete reinforcement, offering enhanced performance, longevity, and flexibility. In this article, we will explore the significance of monofilament plastic synthetic concrete fibers, how they work, and the industries they are revolutionizing.
What is the best concete admixture to strength in South America ? In South America, coastal salt spray, tropical high temperatures, heavy rainfall, and seismic activity pose common challenges to concrete structures, such as early cracking, chloride ion corrosion, insufficient compressive strength,
In infrastructure projects worldwide, concrete's crack resistance, durability, and construction efficiency directly determine project costs and lifespan. Many projects incur rework, delays, and additional maintenance expenses due to difficulties with concrete pumping, failure to meet early strength
How to determine whether the concrete admixture is excessive or insufficient, or whether the water content is too high or too low?
Across the global construction industry, innovation often begins with small but powerful changes in materials.
Polycarboxylate Superplasticizer is a high-performance additive that has transformed modern concrete construction. 、
Polycarboxylate Superplasticizer (PCE) has become a cornerstone in modern concrete technology, offering unmatched performance in workability, strength, and durability.
Fibre-reinforced concrete has become an essential material choice for projects that demand durability, crack resistance, and long-term performance.
Concrete technology has advanced rapidly in recent years, and one of the most significant innovations is the use of macro synthetic fibers.
A concise, engineered reinforcement for concrete, macro synthetic fibres add post-crack strength and reduce surface cracking without the corrosion risks linked to steel.
Have you ever wondered why foam control is crucial in industrial processes? Foam can disrupt operations, reduce efficiency, and affect product quality. The key to managing foam lies in understanding the role of defoaming agents and anti-foam agents. In this post, you'll learn the differences between these agents and their applications in various industries to maintain smooth operations and ensure product quality.
Foam can disrupt food processing, leading to inefficiencies. But what are defoaming agents? These substances control unwanted foam, crucial for smooth operations. The FDA plays a vital role in approving defoamers, ensuring safety and compliance. In this post, you'll learn about FDA approved defoamers, their benefits, and importance in food safety.
Foam in refineries can disrupt operations and reduce efficiency. Why is foam control critical in refining processes? Foam leads to equipment inefficiencies and safety hazards. Antifoaming agents are vital for managing foam. In this post, you'll learn about foam causes, impacts, and the role of defoaming agents in refineries.
Foam can disrupt production, causing inefficiencies and quality issues. Effective foam control is crucial in industrial processes. Anti-foam agents are key to managing foam. In this article, you'll learn how to add defoaming agents effectively to optimize production and maintain product quality.
Foam in paint can ruin a smooth finish, causing imperfections and defects. How do manufacturers tackle this issue? Enter the defoaming agent, a crucial additive in paint formulation. In this post, you'll learn about defoamers' role in ensuring paint quality and the significance of foam control in industrial applications.
IntroductionSodium gluconate is a white, crystalline substance derived from gluconic acid, produced through the fermentation of glucose. It dissolves easily in water, making it a versatile additive in various industries.