| Availability: | |
|---|---|
| Quantity: | |
XRT-PLS
xinrui-te
550340
Fibrillated Microfibers fibre pp polypropylene mesh Synthetic Fiber
------XRT-MS
With 100% virgin polypropylene as raw material, Polypropylene mesh fiber looks like a net structure with many fiber monofilaments connected. When the fiber was mixed into concrete, the horizontal structure in fiber monofilament can be destroyed in the course of stirring owing to friction and rubbing, and the fiber monofilament or net-like structure will fully stretch, thus the concrete is reinforced by a great number (more than 7million pieces per sqm of polypropylene fibers.
Density (g/cm3) | 0.91+/-0.01 | Elastic Modulas (mPa) | > 4000 |
Equivalent Diameter (um) | 100 | Shape | Beam-like Net |
Crack Elongation(%) | ≥ 15 | Acid &Alkali Resistance | Strong |
Tensile Strength (MPa) | 400min. | Length (mm) | Times of 4mm or 6mm |
Melting Point (℃) | 160 –170 | Tensile Ratio (%) | 5-10 |
It is a kind of concrete-strengthening fiber, it become to popular subject in the field of fiber concrete research and application after glass fiber and steel fiber.
Compared with steel fiber, full-dispersed polypropylene fiber has advantages in its thinness, large amount, non-water absorbency, strong acid & alkali resistance and similar elastic modulus with that of concrete.
◆Inrease seepage resistance ◆Prolong endurance
◆Increase cracking resistance ◆Strengthen spurt & fatigue
◆Improve tensile, bending & folding strength ◆Increase fire resistance
◆Strong acid & alkali resistance and good endurance ◆Improve plastic deformity
About length: Generally, the proper length of the fiber added into concrete is 18mm, and in the spray concrete the proper length is
12mm.
Ratio design: Usual the proper amount of to concrete is 0.9kg/m3, the waterproof layer of the bridge requires 1.20-1.8kg/m3, the
spray concrete in the tunnel is also 1.8kg/m3. the fiber has better effects on the concrete with active compound
materials, such as silicon ash, coal powder, ground slag and zeolite powder etc…
Mixer adoption: double-axle horizontal compelling mixer is better and self-dropping cylinder mixer can be used too.
Mixing process: Crushed stones, fibers and sands are put into the mixer in succession, after stirring for about 2-3 minutes, fiber will
fully spread and then add cement and water and stir again as normal process. The addition of materials also can be
put into as usual, but the stirring time should be prolonged to more than 4 minutes to make the fiber completely
dispersed.
ⅰ. Projects like concrete road, bridge, airport road and basement like factory floor which strictly require cracking
resistance. The life span of these projects will be more 5-10 years.
ⅱ. The walls of tunnels, mines, roofs and reservoir projects with special construction. When using spray
technology in concrete construction, the polypropylene fiber added into the concrete can effectively decrease
the spray concrete's deformation rate of the walls less than 8% and that of the roof less than 12%, and also can
reduce the friction. It can improve the constructing efficiency and working environment and popularize the
spray Technology.
ⅲ. River courses and dams, etc. The polypropylene fiber can improve concrete's resistance to crack and squirt and
wear to lengthen projects' life span.
ⅳ. Military defense works, dock banks and piers, etc. This fiber can greatly strengthen the concrete's spurt
resistance and heighten these projects' safety and lengthen their life span.
Fibrillated Microfibers fibre pp polypropylene mesh Synthetic Fiber
------XRT-MS
With 100% virgin polypropylene as raw material, Polypropylene mesh fiber looks like a net structure with many fiber monofilaments connected. When the fiber was mixed into concrete, the horizontal structure in fiber monofilament can be destroyed in the course of stirring owing to friction and rubbing, and the fiber monofilament or net-like structure will fully stretch, thus the concrete is reinforced by a great number (more than 7million pieces per sqm of polypropylene fibers.
Density (g/cm3) | 0.91+/-0.01 | Elastic Modulas (mPa) | > 4000 |
Equivalent Diameter (um) | 100 | Shape | Beam-like Net |
Crack Elongation(%) | ≥ 15 | Acid &Alkali Resistance | Strong |
Tensile Strength (MPa) | 400min. | Length (mm) | Times of 4mm or 6mm |
Melting Point (℃) | 160 –170 | Tensile Ratio (%) | 5-10 |
It is a kind of concrete-strengthening fiber, it become to popular subject in the field of fiber concrete research and application after glass fiber and steel fiber.
Compared with steel fiber, full-dispersed polypropylene fiber has advantages in its thinness, large amount, non-water absorbency, strong acid & alkali resistance and similar elastic modulus with that of concrete.
◆Inrease seepage resistance ◆Prolong endurance
◆Increase cracking resistance ◆Strengthen spurt & fatigue
◆Improve tensile, bending & folding strength ◆Increase fire resistance
◆Strong acid & alkali resistance and good endurance ◆Improve plastic deformity
About length: Generally, the proper length of the fiber added into concrete is 18mm, and in the spray concrete the proper length is
12mm.
Ratio design: Usual the proper amount of to concrete is 0.9kg/m3, the waterproof layer of the bridge requires 1.20-1.8kg/m3, the
spray concrete in the tunnel is also 1.8kg/m3. the fiber has better effects on the concrete with active compound
materials, such as silicon ash, coal powder, ground slag and zeolite powder etc…
Mixer adoption: double-axle horizontal compelling mixer is better and self-dropping cylinder mixer can be used too.
Mixing process: Crushed stones, fibers and sands are put into the mixer in succession, after stirring for about 2-3 minutes, fiber will
fully spread and then add cement and water and stir again as normal process. The addition of materials also can be
put into as usual, but the stirring time should be prolonged to more than 4 minutes to make the fiber completely
dispersed.
ⅰ. Projects like concrete road, bridge, airport road and basement like factory floor which strictly require cracking
resistance. The life span of these projects will be more 5-10 years.
ⅱ. The walls of tunnels, mines, roofs and reservoir projects with special construction. When using spray
technology in concrete construction, the polypropylene fiber added into the concrete can effectively decrease
the spray concrete's deformation rate of the walls less than 8% and that of the roof less than 12%, and also can
reduce the friction. It can improve the constructing efficiency and working environment and popularize the
spray Technology.
ⅲ. River courses and dams, etc. The polypropylene fiber can improve concrete's resistance to crack and squirt and
wear to lengthen projects' life span.
ⅳ. Military defense works, dock banks and piers, etc. This fiber can greatly strengthen the concrete's spurt
resistance and heighten these projects' safety and lengthen their life span.
In the world of modern construction, the demand for durable flooring solutions is ever-increasing. Floor screeds, which are essential for providing a smooth and even surface for floors, often face the challenge of maintaining their integrity under extreme conditions such as high temperatures and heavy traffic. For many years, traditional screed materials have been used in various types of buildings, but there’s always room for improvement, especially when it comes to durability and performance. That’s where heat-resistant concrete fiber comes into play.
In the construction industry, the demand for stronger, more durable materials is ever-growing. As the need for high-performance building materials increases, 100% virgin concrete fiber is emerging as a game-changer in plaster applications. Traditionally, plaster has been used for both aesthetic and functional purposes in construction, but with advancements in material science, concrete fiber is transforming the way plaster is applied and utilized.
Concrete has long been recognized for its strength and versatility in construction projects. Whether it’s for roadways, buildings, or infrastructure, concrete is the backbone of modern construction. However, one of the challenges engineers and builders often face is ensuring that the concrete maintains its structural integrity over time, especially under stress. To overcome this challenge, innovations in concrete materials have been developed, with polymer concrete fiber emerging as a key component in boosting the strength and durability of cement.
In the realm of modern construction, the search for stronger, more durable materials is ongoing. One such innovation that has dramatically changed the way concrete is used in construction is staple concrete fiber. This specialized material, when mixed into concrete, significantly enhances its strength, performance, and longevity. Whether used in pavements, highways, or structural elements, staple concrete fiber provides numerous advantages that traditional reinforcement methods can’t match.
Concrete is one of the most commonly used materials in construction and industrial applications, but the constant challenge has always been improving its durability and strength. One of the most innovative solutions to enhance concrete's performance has been the introduction of monofilament plastic synthetic fibers. These fibers have transformed how industries approach concrete reinforcement, offering enhanced performance, longevity, and flexibility. In this article, we will explore the significance of monofilament plastic synthetic concrete fibers, how they work, and the industries they are revolutionizing.
What is the best concete admixture to strength in South America ? In South America, coastal salt spray, tropical high temperatures, heavy rainfall, and seismic activity pose common challenges to concrete structures, such as early cracking, chloride ion corrosion, insufficient compressive strength,
In infrastructure projects worldwide, concrete's crack resistance, durability, and construction efficiency directly determine project costs and lifespan. Many projects incur rework, delays, and additional maintenance expenses due to difficulties with concrete pumping, failure to meet early strength
How to determine whether the concrete admixture is excessive or insufficient, or whether the water content is too high or too low?
Across the global construction industry, innovation often begins with small but powerful changes in materials.
Polycarboxylate Superplasticizer is a high-performance additive that has transformed modern concrete construction. 、
Polycarboxylate Superplasticizer (PCE) has become a cornerstone in modern concrete technology, offering unmatched performance in workability, strength, and durability.
Fibre-reinforced concrete has become an essential material choice for projects that demand durability, crack resistance, and long-term performance.
Concrete technology has advanced rapidly in recent years, and one of the most significant innovations is the use of macro synthetic fibers.
A concise, engineered reinforcement for concrete, macro synthetic fibres add post-crack strength and reduce surface cracking without the corrosion risks linked to steel.
Have you ever wondered why foam control is crucial in industrial processes? Foam can disrupt operations, reduce efficiency, and affect product quality. The key to managing foam lies in understanding the role of defoaming agents and anti-foam agents. In this post, you'll learn the differences between these agents and their applications in various industries to maintain smooth operations and ensure product quality.
Foam can disrupt food processing, leading to inefficiencies. But what are defoaming agents? These substances control unwanted foam, crucial for smooth operations. The FDA plays a vital role in approving defoamers, ensuring safety and compliance. In this post, you'll learn about FDA approved defoamers, their benefits, and importance in food safety.
Foam in refineries can disrupt operations and reduce efficiency. Why is foam control critical in refining processes? Foam leads to equipment inefficiencies and safety hazards. Antifoaming agents are vital for managing foam. In this post, you'll learn about foam causes, impacts, and the role of defoaming agents in refineries.
Foam can disrupt production, causing inefficiencies and quality issues. Effective foam control is crucial in industrial processes. Anti-foam agents are key to managing foam. In this article, you'll learn how to add defoaming agents effectively to optimize production and maintain product quality.
Foam in paint can ruin a smooth finish, causing imperfections and defects. How do manufacturers tackle this issue? Enter the defoaming agent, a crucial additive in paint formulation. In this post, you'll learn about defoamers' role in ensuring paint quality and the significance of foam control in industrial applications.
IntroductionSodium gluconate is a white, crystalline substance derived from gluconic acid, produced through the fermentation of glucose. It dissolves easily in water, making it a versatile additive in various industries.